Size-based molecular diagnostics using plasma DNA for noninvasive prenatal testing.
نویسندگان
چکیده
Noninvasive prenatal testing using fetal DNA in maternal plasma is an actively researched area. The current generation of tests using massively parallel sequencing is based on counting plasma DNA sequences originating from different genomic regions. In this study, we explored a different approach that is based on the use of DNA fragment size as a diagnostic parameter. This approach is dependent on the fact that circulating fetal DNA molecules are generally shorter than the corresponding maternal DNA molecules. First, we performed plasma DNA size analysis using paired-end massively parallel sequencing and microchip-based capillary electrophoresis. We demonstrated that the fetal DNA fraction in maternal plasma could be deduced from the overall size distribution of maternal plasma DNA. The fetal DNA fraction is a critical parameter affecting the accuracy of noninvasive prenatal testing using maternal plasma DNA. Second, we showed that fetal chromosomal aneuploidy could be detected by observing an aberrant proportion of short fragments from an aneuploid chromosome in the paired-end sequencing data. Using this approach, we detected fetal trisomy 21 and trisomy 18 with 100% sensitivity (T21: 36/36; T18: 27/27) and 100% specificity (non-T21: 88/88; non-T18: 97/97). For trisomy 13, the sensitivity and specificity were 95.2% (20/21) and 99% (102/103), respectively. For monosomy X, the sensitivity and specificity were both 100% (10/10 and 8/8). Thus, this study establishes the principle of size-based molecular diagnostics using plasma DNA. This approach has potential applications beyond noninvasive prenatal testing to areas such as oncology and transplantation monitoring.
منابع مشابه
Bioinformatics Approaches for Fetal DNA Fraction Estimation in Noninvasive Prenatal Testing
The discovery of cell-free fetal DNA molecules in plasma of pregnant women has created a paradigm shift in noninvasive prenatal testing (NIPT). Circulating cell-free DNA in maternal plasma has been increasingly recognized as an important proxy to detect fetal abnormalities in a noninvasive manner. A variety of approaches for NIPT using next-generation sequencing have been developed, which have ...
متن کاملMeDIP Real-Time qPCR has the Potential for Noninvasive Prenatal Screening of Fetal Trisomy 21
This study aimed to verify the reliability of the 7 tissue differentially methylated regions used in the methylated DNA immunoprecipitation (MeDIP) real-time quantitative polymerase chain reaction (real-time qPCR) based approach of fetal DNA in maternal blood to diagnosis of fetal trisomy 21. Forty pregnant women with high risk pregnancy who were referred after first or second trimester screeni...
متن کاملComparison of noninvasive prenatal testing of cell‐free DNA in maternal blood and amniocentesis for evaluation of aneuploidy
Background: The aim of this study was to compare noninvasive prenatal testing (NIPT) of cell‐free DNA in maternal blood and amniocentesis in the diagnosis of aneuploidy. This study was designed to evaluate sensitivity, specificity, accuracy, positive predictive value and negative predictive value of NIPT for detection of aneuploidies compared gold standard test of amniocentesis. Materials and m...
متن کاملNoninvasive Prenatal Molecular Karyotyping from Maternal Plasma
Fetal DNA is present in the plasma of pregnant women. Massively parallel sequencing of maternal plasma DNA has been used to detect fetal trisomies 21, 18, 13 and selected sex chromosomal aneuploidies noninvasively. Case reports describing the detection of fetal microdeletions from maternal plasma using massively parallel sequencing have been reported. However, these previous reports were either...
متن کاملNoninvasive Prenatal Paternity Testing (NIPAT) through Maternal Plasma DNA Sequencing: A Pilot Study
Short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs) have been already used to perform noninvasive prenatal paternity testing from maternal plasma DNA. The frequently used technologies were PCR followed by capillary electrophoresis and SNP typing array, respectively. Here, we developed a noninvasive prenatal paternity testing (NIPAT) based on SNP typing with maternal plasma DN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 23 شماره
صفحات -
تاریخ انتشار 2014